News from the NNI Community - Research Advances Funded by Agencies Participating in the NNI

Date Published
(Funded by the U.S. Department of Energy)

Researchers have converted metallic gold into a two-dimensional semiconductor and customized the material atom-by-atom on boron nitride nanotubes. Two-dimensional semiconductors are promising materials for quantum computing, future electronics, and optical devices.

(Funded by the U.S. Department of Energy)

Researchers have converted metallic gold into a two-dimensional semiconductor and customized the material atom-by-atom on boron nitride nanotubes. Two-dimensional semiconductors are promising materials for quantum computing, future electronics, and optical devices.

(Funded by the National Science Foundation)

Engineers have used “deep learning” techniques to speed up simulations of novel two-dimensional materials and to gain a better understanding of their characteristics and how they are affected by high temperature and radiation.

(Funded by the National Science Foundation)

Engineers have used “deep learning” techniques to speed up simulations of novel two-dimensional materials and to gain a better understanding of their characteristics and how they are affected by high temperature and radiation.

(Funded by the National Science Foundation and the U.S. Department of Energy)

A lithium battery can catch fire because of the high temperatures and rapid charging and discharging, or cycling, in the battery. These conditions can cause the cathode inside the battery to decompose and release oxygen, which can cause spontaneous combustion in the battery. Researchers have discovered that when they wrapped small particles of the lithium cobalt oxide cathode of a lithium battery in graphene, the battery’s loss in capacity was of about 14% after rapid cycling, compared to a loss in capacity of about 45% in a conventional lithium metal battery.

 

(Funded by the National Science Foundation and the U.S. Department of Energy)

A lithium battery can catch fire because of the high temperatures and rapid charging and discharging, or cycling, in the battery. These conditions can cause the cathode inside the battery to decompose and release oxygen, which can cause spontaneous combustion in the battery. Researchers have discovered that when they wrapped small particles of the lithium cobalt oxide cathode of a lithium battery in graphene, the battery’s loss in capacity was of about 14% after rapid cycling, compared to a loss in capacity of about 45% in a conventional lithium metal battery.

 

(Funded by the Office of Naval Research)

A team of engineers has developed a series of 3D-printed metamaterials with unique microwave and optical properties that go beyond what is possible using conventional optical or electronic materials. The fabrication methods developed by the researchers demonstrate the potential of 3D printing to expand the range of geometric designs and material composites that lead to devices with novel optical properties.

(Funded by the Office of Naval Research)

A team of engineers has developed a series of 3D-printed metamaterials with unique microwave and optical properties that go beyond what is possible using conventional optical or electronic materials. The fabrication methods developed by the researchers demonstrate the potential of 3D printing to expand the range of geometric designs and material composites that lead to devices with novel optical properties.

(Funded by the National Institutes of Health)

Scientists have started the first clinical trial of an innovative universal influenza vaccine candidate that uses nanoparticles. The clinical trial is examining the vaccine’s safety and tolerability as well as its ability to induce an immune response in healthy volunteers.

(Funded by the National Institutes of Health)

Scientists have started the first clinical trial of an innovative universal influenza vaccine candidate that uses nanoparticles. The clinical trial is examining the vaccine’s safety and tolerability as well as its ability to induce an immune response in healthy volunteers.